Equivalent timber Area of section | EA = No. steel pieces × MR × b_{s} × d_{s} + No. timber pieces × (b_{t} × d_{t}) = **36,300** mm² |

Inertia of timber about xx axis^{ } | I_{t} = No. timber members × b_{t} × d_{t}³ / 12 = **13,500,000** mm^{4} |

Modified Inertia of steel about xx axis^{ } | I_{s} = No. steel plates × MR × b_{s} × d_{s}³ / 12 = **20,800,000** mm^{4} |

Total Inertia about xx axis in equivalent timber^{ } | I_{xx} = I_{t} + I_{s} = **34,300,000** mm^{4} |

Distance to edge of steel | Y_{s} = d_{s} / 2 = **50** mm |

Distance to edge of timber | Y_{t} = d_{t} / 2 = **60** mm |

Extreme fibre is timber section | Y_{c} = Y_{t} = **60** mm |

Dist of centroid to steel edge | Y_{n} = Y_{s} = **50** mm |

Z to top edge of timber | Z_{c} = I_{xx} / Y_{c} = **572,000** mm³ |

Average density for C24 grade timber (BS 5268-2:2002 Table 8) | ρ_{mean} = **420** kg/m³ |

Self weight of timber (g = 9.81 m/s²) | F_{self, timber} = (b_{t} × h_{t} × ρ_{mean}) × L_{eff} × g = **51.1** N |

Self weight of steel (g = 9.81 m/s²) | F_{self, steel} = (b_{s} × h_{s} × ρ_{steel}) × L_{eff} × g = **84.7** N |

Total self weight (g = 9.81 m/s²) | F_{self} = **136** N |