Timber Beam Design (BS 5268-2:2002)

* You can add your own text, diagrams and photos here *

Beam details

- **Beam**: 141 x 220 mm (3 x 47x220 mm)
- **Timber strength class**: C24
- **Service class of timber**: 2
- **Width**: b = 141 mm
- **Depth**: h = 220 mm

Span details

- **Beam clear span**: \(L_{cl} = 3.5 \text{ m} \)
- **Bearing length**: \(L_{b} = 100 \text{ mm} \)
- **Beam effective span**: \(L_{eff} = L_{cl} + (2 \times (L_{b} / 2)) = 3.6 \text{ m} \)

Loading details

Load 1: UDL - Sloping roof, 30° to 45°

- **Dead load**: \(F_{d1} = 1.41 \text{ kN/m}^2 \times 2 \text{ m} = 2.82 \text{ kN/m} \)
- **Imposed load**: \(F_{i1} = 0.75 \text{ kN/m}^2 \times 2 \text{ m} = 1.5 \text{ kN/m} \)

Reactions (unfactored)

<table>
<thead>
<tr>
<th></th>
<th>Dead</th>
<th>Imposed</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left reaction</td>
<td>5.31 kN</td>
<td>2.70 kN</td>
<td>8.01 kN</td>
</tr>
<tr>
<td>Right reaction</td>
<td>5.31 kN</td>
<td>2.70 kN</td>
<td>8.01 kN</td>
</tr>
</tbody>
</table>

Modification factors

- **Timber service class modification factor K2** as table 16
- **Bending parallel to grain**: \(K_{2,ben} = 1.00 \)
- **Compression perpendicular to grain**: \(K_{2,com} = 1.00 \)
- **Shear parallel to grain**: \(K_{2,shr} = 1.00 \)
- **Mean & min modulus of elasticity**: \(K_{2,mod} = 1.00 \)
- **Load duration factor**: \(K_3 = 1.25 \)
- **Bearing modification factor**: \(K_4 = 1.00 \)
- **Depth factor (BS5268-2 clause 2.10.6)**: \(K_7 = (300 / h)^{0.11} = 1.03 \)
- **Load sharing modification factor (BS5268-2 clause 2.10.11)**: \(K_8 = 1.10 \)
- **Modulus of elasticity modification factor (BS5268-2 clause 2.9)**: \(K_9 = 1.21 \)
Modulus of elasticity

Timber minimum modulus of elasticity

\[E_{\text{min}} = 7,200 \text{ N/mm}^2 \]

The minimum modulus of elasticity modified by the factor K9 should be used for deflections

\[E = E_{\text{min}} \times K_{2,\text{mod}} \times K_9 = 8,710 \text{ N/mm}^2 \]

Section properties

Area of section

\[\text{Area} = b \times h = 31,000 \text{ mm}^2 \]

Inertia of timber about xx axis

\[I_{xx} = b \times h^3 / 12 = 125,000,000 \text{ mm}^4 \]

Z to top edge of timber

\[Z = b \times h^2 / 6 = 1,140,000 \text{ mm}^3 \]

Average density for C24 grade timber (BS 5268-2:2002 Table 8)

\[\rho_{\text{mean}} = 420 \text{ kg/m}^3 \]

Self weight (g = 9.81 m/s²)

\[F_{\text{self}} = b \times h \times L_{\text{eff}} \times \rho_{\text{mean}} \times g = 460 \text{ N} \]

Section design parameters

Design bending moment

\[M_b = 7,210,000 \text{ Nmm} \]

Design shear force

\[F_{\text{ve}} = 8,010 \text{ N} \]

Check bending stress

Timber grade bending stress parallel to grain (BS 5268-2 Table 8)

\[\sigma_{\text{t,m,par}} = 7.5 \text{ N/mm}^2 \]

Permissible timber bending stress (factored)

\[\sigma_{\text{t,m,adm}} = \sigma_{\text{t,m,par}} \times K_{2,\text{ben}} \times K_i \times K_F \times K_8 = 10.7 \text{ N/mm}^2 \]

Maximum bending moment

\[M = 7.21 \text{ kNm} \]

Applied bending stress in timber

\[\sigma_{\text{t,m,max}} = M / Z = 6.34 \text{ N/mm}^2 \]

Pass \(\sigma_{\text{t,m,max}} \leq \sigma_{\text{t,m,adm}} \) (6.335 N/mm² \(\leq 10.67 \text{ N/mm}^2 \)) applied bending stress in timber within permissible
Check deflection (including shear deflection as required by clause 2.10.7)

Deflection based on $E = 8712 \text{ N/mm}^2$
- Dead load deflection without shear $\delta_d = 5.91 \text{ mm}$
- Imposed load deflection without shear $\delta_i = 3.01 \text{ mm}$
- Total dead & imposed load deflection $\delta_t = 8.92 \text{ mm}$
- Modulus of rigidity $G = E / 16 = 544 \text{ N/mm}^2$
- Shape factor for rectangular section $K_F = 1.2$
- Shear area for beam $A_y = EA / K_F = 25,800 \text{ mm}^2$
- Total dead & imposed load $WT = 16 \text{ kN}$
- If total dead & imposed load applied as a UDL, additional deflection due to shear $\delta_{sa} = WT \times L_{eff} \times 10^6 / (8 \times A_y \times G) = 0.512 \text{ mm}$
- Shear deflection $\delta_{\text{shear}} = \delta_{sa} \times M / (WT \times L_{eff} / 8) = 0.512 \text{ mm}$
- Permissible deflection $\delta_{adm} = 0.003 \times L_{eff} \times 10^3 = 10.8 \text{ mm}$
- Total deflection inclusive of shear $\delta_{\text{max}} = \delta_d + \delta_i + \delta_{\text{shear}} = 9.44 \text{ mm}$

Pass $\delta_{\text{max}} \leq \delta_{adm}$ (9.44 mm \leq 10.8 mm), therefore OK for deflection
Check shear stress

No notches to occur at the critical shear position.

Timber grade shear stress parallel to grain (BS5268-2 Table 8)
\(\tau_{t,g,par} = 0.71 \text{ N/mm}^2 \)

Permissible shear parallel to grain (factored)
\(\tau_{t,adm} = \tau_{t,g,par} \times K_{2,shr} \times K_2 \times K_9 = 0.976 \text{ N/mm}^2 \)
Design shear force
\(F_{ve} = 2 \times \tau_{t,adm} \times b \times h / 3 = 20,200 \text{ N} \)

Pass \(F_{ve} \leq F_{t,adm} \) (8006 N <= 20189 N) shear capacity of timber is greater than applied shear force, therefore OK

Check bearing stress

Timber grade compressive stress perpendicular to grain (BS5268-2 Table 8)
\(\sigma_{t,c,g,} = 1.9 \text{ N/mm}^2 \)

Permissible compressive stress perpendicular to grain (factored)
\(\sigma_{t,c,adm} = \sigma_{t,c,g,} \times K_{2,per} \times K_2 \times K_1 = 2.61 \text{ N/mm}^2 \)
Design bearing stress on support
\(\sigma_{t,c,max} = F_{ve} / (L_b \times b) = 0.568 \text{ N/mm}^2 \)

Pass \(\sigma_{t,c,max} \leq \sigma_{t,c,adm} \) (0.568 N/mm² <= 2.613 N/mm²) bearing stress is less than permissible timber stress, therefore OK

Design summary

<table>
<thead>
<tr>
<th></th>
<th>Permissible</th>
<th>Applied/Actual</th>
<th>Utilisation</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shear force (kN)</td>
<td>20.2</td>
<td>8.01</td>
<td>39.7 %</td>
<td>OK</td>
</tr>
<tr>
<td>Bending stress (N/mm²)</td>
<td>10.7</td>
<td>6.34</td>
<td>59.4 %</td>
<td>OK</td>
</tr>
<tr>
<td>Bearing stress (N/mm²)</td>
<td>2.61</td>
<td>0.57</td>
<td>21.7 %</td>
<td>OK</td>
</tr>
<tr>
<td>Deflection (mm)</td>
<td>10.8</td>
<td>9.44</td>
<td>87.4 %</td>
<td>OK</td>
</tr>
</tbody>
</table>

Notes

Joists to be bolted together with M12 bolts at 600mm spacings.
This design is in accordance with BS 5268-2:2002 Structural use of timber - Part 2: Code of practice for permissible stress design, materials and workmanship.

The depth to width ratio of the timber does not exceed 5 and as per the requirements of BS 5268-2 Table 19 there is no risk of buckling under design load provided; The ends are held in position and compression edge held in line, as by direct connection of sheathing, deck or joists.

Timber to be covered, this calculation is not to be used for timber which is fully exposed to the elements.

Wane as allowed in BS 4978:2007 + A2:2017 is permitted.